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1 Introduction

Synthesis methods have been used to derive the specification of a set of appli-
cation components running in a distributed system of networked computers
(hereafter called protocol specification) automatically from a given specifica-
tion of services to be provided by the distributed application to its users (called
service specification). The service specification is written in the form of a cen-
tralized model, and does not contain any message exchanges between different
physical locations. However, the definition of the behavior of the application
components, called protocol entities (PE’s), includes the message exchanges
between these entities. Protocol synthesis methods have been used to specify
and derive such complex message exchanges automatically in order to reduce
the design costs and errors that may occur when manual methods are used.

Many synthesis methods have been proposed in the literature. The methods
use different computational models as service definition languages. For exam-
ple, the methods presented in [1–3] use CCS/LOTOS models, the methods in
[4–8] use FSM/EFSM models and the methods in [9–15] use Petri net models.
Similar methods may also be used for deriving distributed testers for dis-
tributed applications [16] and for deriving specifications of real-time systems
[17–19]. In this paper we consider service and protocol specifications written in
High-Level Petri nets. These are extended Petri nets where tokens have values
and the firability of transitions may depend on those values. Popular versions
of High-Level Petri nets are predicate/transition nets [20,21] and coloured
Petri nets (CPN) [22]. These models have enough modeling power, analyti-
cal power and tool support (such as CPN Tools [23]) to specify, verify and
analyze large and practical software systems [24], communication protocols
[25,26], control systems and so on [22,27].

In this paper, we propose a new algorithm for the derivation of a protocol
specification in Pr/T-nets, which is the specification of N communicating en-
tities (N is given), from a given service specification in Pr/T-nets and an
allocation of the places of the service specification to the N entities. Our al-
gorithm decomposes each transition of the service specification into a set of
communicating Pr/T-subnets running on the N entities. Moreover, in order
to improve the efficiency of controlling the conflict between different transi-
tions over shared resources, we present a timestamp-based contention control
algorithm and incorporate it into the derivation algorithm. A tool has been de-
veloped that includes our derivation algorithm and works together with other
existing tools for the representation of the service and derived protocol speci-
fications. As application examples we discuss the application of our synthesis
method to a distributed media transcoding service on overlay networks and
to a distributed software development process [28].
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Our approach is very powerful in the sense that general Pr/T-nets are allowed
to be used for specifying services. Such Pr/T-nets may include complex conflict
structures between transitions that require read and/or write access to shared
resources in the form of tokens with values stored at shared places. Since these
resources may reside on different sites and the transitions should be initiated
when all required resources are available, we have to deal with this complex
problem of distributed synchronization for the different transitions involving
the protocol entities on the different sites. We first present a basic Transition
Execution Protocol where a transition is initiated by its “primary site” without
having full knowledge about the available resources; the transition is then
canceled whenever there appears to be some conflict or deadlock possibility.

Some existing synthesis methods also allow to treat variables (parameters) in
their modeling languages as for instance a CCS-based model with I/O param-
eters [1] and Petri nets with external variables [9,15]. However, since these
existing methods mainly focus on value exchanges between entities, only sim-
ple control flows are allowed; the combination of choices and synchronization
involving parameters, which often represents resource conflict, is not treated
by those methods. Therefore, the class of acceptable service specifications has
been considerably extended by the approach described in this paper. As far
as we know, no previous paper has presented synthesis approaches for general
Pr/T-nets.

We note that the basic idea of this paper was presented in [29]. Here we
extend that work in several ways. First, we enhance the derivation algorithm
by including a new derivation policy. Using a few additional messages, this
policy prevents large size resources from being exchanged between entities.
Second, we include a detailed timestamp-based contention control algorithm
for the efficient control of conflict for shared resources. Third, we developed
a tool that includes our derivation algorithm and can interwork with other
Petri net tools. Fourth, we provide arguments for the validity of our method
and discuss the application of the method to two realistic examples.

This paper is organized as follows. Section 2 includes the definition of Pr/T-
nets and provides examples of service and protocol specifications written in
this notation. In Section 3 we present our derivation algorithm and in Section
4 we enhance this algorithm by incorporating a timestamp-based contention
control algorithm. In Section 5 we describe two application examples and in
Section 6 we conclude the paper.
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2 Service and Protocol Specifications in Pr/T-Nets

2.1 Predicate/Transition-Nets

We use predicate/transition-nets (Pr/T-nets) [20] for representing service and
protocol specifications of target systems. In Petri nets, a place (denoted as a
circle) represents a state or data of a system, and a transition (denoted as a
rectangle) represents a task (or job) of the system. A place and a transition
may be connected by a directed edge called an arc (denoted by an arrow).
Tokens (denoted as black dots) in places represent the current state of the
system, and execution (“firing” in the Petri net terminology) of a transition
may consume/produce tokens from/to the places connected to the transition.

Pr/T-nets are an extended form of Petri nets. Intuitively, in Pr/T-nets, each
incoming arc to a transition t from a place p has a label of the form of
k1X1k2X2... called an arc label where ki is a positive integer, Xi is a n-tuple
of variables like 〈x1, x2, ...xn〉 and n is an arbitrary non-negative integer as-
signed to place p. Place p may have tokens, each of which is a n-tuple of values
Ci = 〈c1, c2, ...cn〉. A set of tokens which can be assigned to an incoming arc
to transition t is called an assignable set of the arc. Moreover, a transition t
may be associated with a logical formula of variables from the labels of in-
coming arcs of t, called a condition. Conditions are depicted inside transitions
rectangles. A transition t may fire iff there exists an assignable set in each
input place of t and the assignment of values to variables by the assignable set
satisfies the condition of t. Also, each outgoing arc from transition t to a place
p′ has a label of the form of k′

1Y1k
′
2Y2... where k′

i is a positive integer and Yi is
a n′-tuple of values, variables on the incoming arc labels of t or functions over
the variables. Therefore, if t fires, the values of the labels on the outgoing arcs
from t are determined by the assigned input tokens according to the output
arc labels. New sets of tokens are generated and put into the output places of
t.

Fig. 1 includes an example of Pr/T-net. In Fig. 1(a), the incoming arc to t
from p1, (p1, t), has the label 2〈x, y〉 where x and y are variables. This means
that two tokens each consisting of a pair of values are necessary in place p1 for
the firing of transition t. Here, since the following assignable sets 2〈“a”,“c”〉
in p1 (“a” and “c” are strings here), 〈“a”〉 and 〈“c”〉 in p2 and two tokens
without values in p3 satisfy the condition of t, (x = z ∧ y = w), t can fire
using these sets. Note that tokens without values are called normal tokens and
represented as black dots in the following figures hereafter. After the firing of
t, new tokens are generated to the output places p4 and p5 using those token
values. The marking after the firing of t is shown in Fig. 1(b). Note that “@”
is a concatenation function of two strings. Thus a tuple of strings “aa”, “c”
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p1

2<x, y>

p2 p3

p4 p5

<z> <w>

 x=z /\ y=w

 2 

2<"a", "b">
3<"a", "c">

 t 

<"a">
<"b">
<"c">

p1 p2 p3

p4 p5

<x@z, y, z>

 t 

<x@z, y, z>

2<x, y> <z> <w>

2<"a", "b">
<"a", "c"> <"b">

 x=z /\ y=w

<"aa", "c", "a">

 2 

(a) Before firing of t. (b) After firing of t.

Fig. 1. An example of Pr/T-nets.

and “a” is generated to p4. The arc label “1”, which means the delivery of one
normal token, is omitted in the following figures.

In the following we formally define the Pr/T-nets model. For related detailed
definition, the reader may refer to [20,21].

Definition 1 N = (P, T, F, U, L, C, m0) is called a Predicate/Transition-net
(Pr/T-net) iff

(1) (P, T, F ) is a Petri net where P , T and F ⊆ (P × T ) ∪ (T × P ) are sets
of places, transitions and arcs, respectively.

(2) U is a finite set of values, variables and operators over the values and
variables, for example, U = {“a”,“b”, ...; x, y, ...; >, =,∨, ...}.

(3) L is a set of arc labeling functions. Each function assigns an arc la-
bel to either an incoming arc (p, t) to a transition t or an outgoing arc
(t′, p′) from a transition t′. The arc label assigned to (p, t) has a form like
k1X1...kmXm (m ≥ 0) where ki is a positive integer and Xi is a n-tuple
of variables. The arc label assigned to (t′, p′) has a form like k′

1Y1...k
′
m′Ym′

(m′ ≥ 0) where k′
i is a positive integer and Yi is a n′-tuple of values, the

variables on the labels of incoming arcs to t′ and functions in U over the
variables.

(4) C is a set of transition labeling functions. Each function assigns to a
transition t a logical formula over the values and variables in U . This is
called a condition. Variables in a condition of transition t are from the
variables on the labels of incoming arcs to t.

(5) m0 is the initial marking of N which assigns to each place p n-tuples of
values. Each tuple of values is called a token.

Hereafter •t and t• denote the sets of input and output places of t, respectively.
A transition t may fire at a marking m iff for each place p ∈ •t there exists an
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assignment βp that assigns to L(p, t) (the label of arc (p, t)) a subset of m(p)
(tokens in place p) and those assignments

⋃
p∈•t βp make the value of C(t) be

true. If t fires, for each output place p′ ∈ t•, the set of tokens (the value of
L(t, p′) determined by the assignments

⋃
p∈•t βp) is generated to p′.

2.2 Service Specification

A service specification is a description of services to be provided to the service
users of a distributed system. Fig. 2(a) shows an example service specification.
For readability, we use a very simple example. The system works as follows.
At the initial marking, transition tu can fire, since there exists an assignable
set in each input place of tu and these assignable sets satisfy the condition
of tu. For example, 〈“a”〉 in p1, 〈“b”〉 in p2, 〈“c”〉 in p3 and 〈“d”〉 in p4 are
such assignable sets that satisfy the condition, since character values “a”, “b”,
“c” and “d” are assigned to variables x, y, z and w, respectively, and the
condition “x < z” under those assignments becomes “a”<“c” (this is true in
the alphabetical order). Let us assume that these tokens are used for the firing
of tu. If tu fires, these tokens are removed and three tokens 〈“a”〉, 〈“b”〉 and
〈“c”〉 are generated to the output place p4, and a new token 〈“a”,“b”,“d”〉 is
generated to p5.

2.3 Protocol Specification

A protocol specification is lower level specification of the distributed system
that consists of N entities (distributed components) communicating with each
other. These entities are called sites in this paper. In distributed systems, com-
puter resources (such as databases), which are usually represented as places
with tokens in Pr/T-nets, are usually distributed over multiple sites. In de-
scribing a service specification, developers are not required to be aware of the
location of the places. However, in a protocol specification, these sites need
cooperatively to collect/distribute tokens from/to these places to execute the
transition. Thus, a protocol specification is a set of specifications of N sites
and contains communicating behavior between the sites.

Fig. 2(b) shows a protocol specification, which is a distributed specification of
the service in Fig. 2(a) over three sites. In protocol specifications, we introduce
places called communication places for modeling asynchronous and reliable
communication channels, represented by dotted circles. They are like “fusion
places” in coloured Petri nets [22]. We assume that two communication places
with a common name “Xu.ij” (X=α, β or γ, explained in the next section) in
the Pr/T-nets of two different sites i and j represent the end points (send and
receive buffers) of a reliable communication channel from site i to site j. If a
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p2p1 p4p3

tu

p5

<x,y,w>

<y><x>  <z>

x < z

<"a">
<"c">

 <w>

<"c">
<"d"> <"d">

<x><y><z>

<"b">
<"d">

site A site B site C

(places p1,p2,p5) (place p3) (place p4)

tu.start

tu.commit (x<z)
tu.commit (x<z)

tu.commit (x<z)

<w>

<x,y>
<x>

<z><z>

tu.read

tu.read

<x><y> <z> <w>

<x,y,w> <x><y><z>

(normal token)

(a) (c)

x<z /\
(z!=φ/\ x!=φ)

x<z /\
(x!=φ/\ z!=φ)

p3 p4

<y>

!(x<z) \/
(x!=φ/\z=φ)

 <z>

βu.ba βu.bc

βu.ac βu.bc

αu.ca αu.cb

βu.ab βu.ac

αu.cbαu.ca <x>

<x,y,w>

 <z>

<x,y,w>

<x,y,w> <z>

βu.ba

 <z>

βu.ab

<x>
<x>  <z>

<x>

 <w>

 <w>

<x,y>

 <w>

<x,y>
<x>

 <z>

 <z>
 <z>

 <z>

 <w>

<x,y>

 <z>

note: an arc without label carries a normal token

 <w>  <w>

<w><φ>

p1
<"a">
<"c">

<"b">
<"d">

<"d">
p2

 <y>

tu.read

tu.cancel

<φ>

tu.readtu.cancel tu.start

<x,y,w>

<φ>

 <z>

<φ>
<φ,φ>

<φ,φ,φ>

<x,y,w>

<x>

x=φ

tu.abort2 tu.abort1 tu.commit

p5

z=φ

tu.abort2 tu.abort1 tu.commit

 <x><y><z>

!(x<z) \/
(x=φ \/ z=φ)

 <z>
 <w>

 <z>

tu.committu.abort1

site A site B site C

p.innerp.lock p.inner

p.inner

p.lock

p.lock

<"c">
<"d">

!(x<z) \/
(z!=φ/\x=φ)

x<z /\
(x!=φ/\ z!=φ)

(b)

Fig. 2. (a) Service specification. (b) Protocol specification. (c) Timing chart.

token is put on “Xu.ij” at site i, the token is eventually removed and put onto
“Xu.ij” at site j. Note that u means that these communication places are used
with respect to the execution of transition tu of the service specification. In
the following figures, communication places are represented as dotted circles
with their names inside. Arcs without labels carry normal tokens (i.e. tokens
without values). Also, in protocol specifications we introduce a reserved symbol
denoted by φ, used in tokens for notification purpose only.

In our derivation algorithm, we assume that an allocation of the places of the
service specification to sites is given. In the protocol specification of Fig. 2(b),
places p1, p2 and p5 are located to site A, p3 to site B, and p4 to site C. Under
this allocation, our derivation algorithm determines how the values in these
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Table 1
Semantics of transitions in protocol specifications.

Name Semantics

t.start initiates the execution of service t by taking an assignable set of tokens
from each input place of t at the site, and sends them to the other sites

t.read (following t.start,) takes an assignable set of tokens from each input
place of t at the site and sends them to the other sites

t.cancel (following t.start,) is executed if assignable sets of tokens are not avail-
able for all input places at the site. It sends tokens with symbol φ
(cancellation tokens) to the other sites to let them know that an input
place has no assignable set

t.commit commits the execution of t

t.abort1 aborts the execution of t due to the lack of assignable sets of tokens
on the other sites or the condition of t. The assignable sets of tokens
taken from the input places are returned

t.abort2 aborts the execution of t due to the lack of tokens on the site itself

places and other notification messages are exchanged to simulate the behavior
of the service specification.

In the derivation algorithm, one of the sites that have input places of tu starts
the execution of tu. In Fig. 2(b), this is site C. It starts the execution by
firing the “start” transition “tu.start”, which sends an assignable set to site
A carrying the value 〈w〉 via the communication place “αu.ca” and a normal
token via communication place “αu.cb” to site B. If site A has assignable sets
in the input places p1 and p2 and if it receives the value 〈w〉 from site C, it fires
the “read” transition “tu.read”, which sends the value 〈x〉 to site B and the
tuple of values 〈x, y〉 to site C via communication places “βu.ab” and “βu.ac”,
respectively. If either p1 or p2 does not have an assignable set, the “cancel”
transition “tu.cancel” will eventually fire on site A and will send cancellation
tokens (tokens with φ) to sites B and C via the communication places “βu.ab”
and “βu.ac”, respectively. The firing of the cancel transition at site A means
that the execution of tu will be aborted due to the lack of assignable sets in
input places p1 and p2 of tu

1 . Similarly, site B takes an assignable set from p3

and sends the value 〈z〉 to both sites A and C. Consequently, every site can
examine (i) whether all the input places of tu have assignable sets or not, and
(ii) whether the assignable sets satisfy the condition of tu or not if (i) is true.
If (i) and (ii) are true, the “commit” transition “tu.commit” on each site will
eventually fire and new tokens are generated on sites A and C for the output

1 In the Petri net formalism, tu.cancel may fire even when tu.read can fire. In a
practical aspect, it can be easily avoided by prioritizing the firing of tu.read than
that of tu.cancel.
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places p5 and p4, respectively (i.e. the execution of tu has been committed).
If either (i) or (ii) does not hold, the “abort” transition tu.abort1 or tu.abort2
on each site fires. tu.abort1 fires in case that an input place at an other site
does not have an assignable set or (ii) does not hold, and tu.abort2 fires in case
that an input place at the site itself does have an assignable set. If tu.abort1
fires, the tokens read from the input places are returned to the input places,
i.e., the execution of tu is aborted. These transitions are listed in Table 1. A
possible time sequence diagram is shown in Fig. 2(c).

We note here that as shown in the protocol specification of Fig. 2(b), we
have introduced a place (called p.lock) in each site initially having a normal
token (represented as a black dot). This is to prevent other assignable sets
from starting another execution of the same transition before completing the
previous execution.

3 Derivation Algorithm

3.1 Overview

Given a service specification Sspec written in the form of a Pr/T-net, the
number N of sites, and an allocation of each place of the service specification
to one of the N sites, our derivation algorithm derives a protocol specification
Pspec, which consists of a set of specifications for the N sites. The derivation
algorithm is presented in Section 3.3, and in Appendix B we comment on its
validity.

The derivation of the protocol specification proceeds for each transition of the
service specification, independently of the other service transitions. For each
given transition t of the service specification, the derivation algorithm creates a
Transition Execution (TE) Protocol which is explained in the next subsection.
In fact, an example of the TE Protocol was already discussed in Section 2.3 for
the example of Figure 2. The TE Protocol for a given service transition consists
of a partial Petri-net behavior for each site i. For the protocol specification,
the behavior specification for site i is obtained by putting together the partial
Petri-net behaviors (for site i) obtained from all the transitions of the service
specification. The resulting structure of the behavior specification for site i
is similar to the structure that links the different transitions in the service
specification.
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Table 2
The role of sites in transition execution protocol.

site

reading site is a site which has at least one input place of t.

primary site is a site selected from the reading sites of t. It starts the
execution of this transition

writing site is a site which has at least one output place of t.

3.2 Principle of the Transition Execution Protocol

Depending on a given allocation of places, for each transition t of Sspec, we
identify the set of sites called reading sites which have at least one input place
of t, and also the set of sites called writing sites which have at least one output
place of t. Then we select one of the reading sites as the primary site. This is
summarized in Table 2.

In the following we describe the TE protocol.

(1) The primary site (say site i) starts the execution of t by taking assignable
sets from the input places of t allocated to site i. Then to the other reading
and writing sites, it sends tokens (carried via α communication places)
with the values included in the assignable sets. These values are used
to examine the condition of t or for generating new tokens. Thus some
tokens may include no value if a reading or writing site does not need
these values.

(2) When a reading site (say site j) receives token(s) from the primary site,
site j selects an assignable set from each input place of t allocated to site j
if such a set exists. Then to the other reading and writing sites, site j sends
tokens (carried via β communication places) with the values included in
the assignable sets. These values are used to examine the condition of t
or for generating new tokens. Thus some tokens may include no value if
a reading or writing site does not need these values. If an assignable set
does not exist, site j sends tokens with null values φ, called “cancellation
tokens”.

(3) The reading and writing sites examine (i) whether all the input places of
t have assignable sets or not, and (ii) whether the assignable sets satisfy
the condition of t. The first condition can be checked by checking if the
received tokens include φ or not, and the second condition can be checked
by using the included values in the received tokens. If the conditions (i)
and (ii) are true, the reading sites discard the assignable sets and the
writing sites generate new tokens to the output places of t allocated to
them. Otherwise, the execution of t is aborted. In this case, the assignable
sets which have been acquired by the reading sites are returned to the
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original input places.

In order to prevent deadlocks due to waiting for tokens where an assignable
set does not exist in an input place of a transition, we have introduced a
mechanism to cancel and abort the execution of the transition when one of
the input places has no assignable set. For performance reasons, it is clear that
one would like to avoid the cancellation of a transition as much as possible.
In the case of free-choice Petri nets, the choice between alternatives can be
performed by a single place which is an input place to all the alternative
transitions. In this case, we could choose as primary site of all those transitions
the site to which that place is allocated. In this case the cancel transition in
the protocol specification does not need to be implemented, thus simplifying
the protocol specification and avoiding transaction cancellation. For the case
of general Petri nets, a distributed contention control algorithm for partly
avoiding transition cancellations is described in Section 4.

3.3 Derivation Algorithm in Detail

Here we present the protocol derivation algorithm which is based on the TE
protocol described in Section 3.2. Hereafter, for a set P of places, let ALCi(P )
denote the set of places in P allocated to site i. We note that ∪kALCk(P ) = P
and ∀i, j ALCi(P ) ∧ ALCj(P ) = ∅. For the set P of places of Sspec and for
each site i, the set ALCi(P ) of places allocated to site i is given.

For a given transition t of the service specification, let RS(t) and WS(t) denote
the sets of reading sites and writing sites of transition t, respectively. They are
uniquely determined by the given allocation. Let ps(t) denote the primary site
of t. We may select any reading site as the primary site. Also, let V ini(t) denote
the set of variables used in the label of an arc (p, t) (p ∈ ALCi(•t)), V outi(t)
denote the set of variables used in the label of an arc (t, p′) (p′ ∈ ALCi(t•)),
and let V cond(t) denote the set of variables used in the condition of t. A
summary of all notations used in the algorithm is given in Table 3.

For demonstrating the different steps of the algorithm, we use Sspec in Fig.
2(a) (it is shown in Fig. 3(a) again). Let us assume that there are three sites
and places p1, p2 and p5 are allocated to site A, place p3 is allocated to site
B, and place p4 to site C. This allocation of places is shown at the name
of each place in Fig. 3(a). Under this allocation, RS(t) = {A, B, C} and
WS(t) = {A, C}. We have chosen ps(t) = C.

[The Derivation Algorithm]

Step A: Decompose Transitions

11



Table 3
Notations used in derivation algorithm.

ALCi(P ) the set of places contained in a given set P of places and allocated to
site i

ps(t) the primary site of t

RS(t) the set of reading sites of t, including the primary site

WS(t) the set of writing sites of t

V ini(t) the set of variables in the label of an arc (p, t) where p ∈ ALCi(•t)
V outi(t) the set of variables in the label of an arc (t, p′) where p′ ∈ ALCi(t•)
V cond(t) the set of variables in the condition of t

Based on the given allocation of places to sites, this step (Step A) transforms
every transition t of Sspec into a set of distributed transitions. As a result,
this step builds a basic structure of Pspec, which token values and transition
conditions are determined later in Steps C and D. t.read (or t.start) transitions
are introduced to take assignable sets from the input places of t at the reading
sites as well as to receive assignable sets at the reading and writing sites
sent from the primary site. t.commit transitions are introduced to check the
condition of t and generate tokens to the output places of t at the reading and
writing sites. Also, by adding certain other places, it is guaranteed that (1)
t.start transition is executed first, (2) each t.read transition is executed after
the t.start transition, and (3) each t.commit transition is executed after all
t.read transitions at the reading sites. The result of applying Step A to our
example is shown in Fig. 3(b).

For a formal description of the algorithm, we introduce the net transformation
rules shown in Figs. 4(a), 4(b) and 4(c). Rule 1 splits a synchronization transi-
tion into m (m > 1) independent transitions where each input or output place
is attached to one of these transitions. As a result, this operation removes
synchronization. Rule 2 inserts a new transition and a new place before or
after a transition. Rule 3 inserts a place to create an execution order between
two independent transitions.

(A-1) Decompose t into t.commit transitions: For each reading or writ-
ing site k, this step generates t.commitk which has the input and output
places of t allocated to site k. Formally,
- apply Rule 1 to divide each transition t of Sspec into a set of t.commitk

transitions such that for each k ∈ RS(t) ∨ WS(t) a t.commitk transition
is created for site k. Then attach the places in ALCk(•t) ∨ ALCk(t•) to
t.commitk.

(A-2) Add t.start and t.read transitions and p.inner places: For each
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Fig. 3. Derivation algorithm snapshots.

t.commitk, this step inserts a transition t.readk (or t.start) and a place
p.innerk. Formally,
- for each t.commitk (k �= ps(t)), apply Rule 2 to insert a transition t.readk

and a place p.innerk before t.commitk, and
- for t.commitps(t), apply Rule 2 to insert a transition t.start and a place

p.innerps(t) before t.commitps(t).
We note that t.read transitions at writing sites are needed to receive tokens
via α-communication places introduced in step (A-3).

(A-3) Add communication places: This step introduces communication
places between the above generated transitions. Formally,
- for each pair of t.start and t.readj (j ∈ RS(t) ∨ WS(t)\{ps(t)}), apply

Rule 3 to insert a communication place αij, and
- for each pair of t.readj and t.commitk (j ∈ RS(t)\{ps(t)} and j �= k),

apply Rule 3 to insert a communication place βjk.
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Fig. 4. Transformation rules used in steps A and B of derivation algorithm.

Step B: Introduce Cancellation and Locking Mechanisms

The second step (Step B) adds cancellation and locking mechanism for the
consistent execution of distributed transitions. t.cancel transitions are intro-
duced to check the availability of assignable set in the input places of t and
t.abort1 and t.abort2 transitions are introduced to actually abort the execu-
tion of t. p.lock places are introduced to prevent starting another execution
of t before the end of the current execution. The result of applying Step B to
our example is shown in Fig. 3(c).

For the formal description of Step B, we use the net transformation rules
shown in Figs. 4(d), 4(e) and 4(f). Rule 4 adds a transition that removes
tokens from places and generates tokens to different places. Rule 5 adds a sink
transition to discard tokens in places. Rule 6 inserts a place to let sequence(s)
of transitions become critical section(s).

(B-1) Add t.cancel transitions: For each t.readj (j ∈ RS(t)\{ps(t)}), a
transition t.cancelj is introduced to generate cancellation tokens when some
input places at site j have no assignable set. Formally,
- for each t.readj (j ∈ RS(t)\{ps(t)}), apply Rule 4 to add a transition

t.cancelj where •t.cancelj = {αij} and t.cancelj• = t.readj•.
(B-2) Add t.abort1 transitions: For each t.commitk, a transition t.abort1k

is introduced to abort the execution of t, and to return the tokens to the
original input places at site k if site k is a reading site. Formally,
- For each t.commitk, apply Rule 4 to add a transition t.abort1k where
•t.abort1k = •t.commitk and t.abort1k• = ALCi(•t).

(B-3) Add t.abort2 transitions: For each t.commitk (k ∈ RS(t)\{ps(t)}),
a transition t.abort2k is introduced to abort the execution of t. Unlike
t.abort1k, t.abort2k fires if no assignable set is taken from the places at
site k (thus site k does not need to return the assignable set). Formally,
- for each t.commitk (k ∈ RS(t)\{ps(t)}), apply Rule 5 to add a transition
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t.abort2k where •t.abort2k = •t.commitk.
(B-4) Add p.lock places: These places are introduced to let the decom-

posed part that corresponds to transition t be a critical section. Formally,
- for each k ∈ RS(t)\{ps(t)}, apply Rule 6 to add a place p.lockk with

a normal token inside where •p.lockk = {t.commitk, t.abort1k, t.abort2k}
and p.lockk• = {t.readk, t.cancelk},

- for each k ∈ WS(t)\RS(t), apply Rule 6 to add a place p.lockk with a nor-
mal token inside where •p.lockk = {t.commitk, t.abort1k} and p.lockk• =
{t.readk}, and

- for ps(t), apply Rule 6 to add a place p.lockps(t) where •p.lockps(t) =
{t.commitk, t.abort1k} and p.lockps(t)• = {t.start}.

Step C: Set Arc Labels

This step sets the arc labels attached to α and β communication places and
p.inner places. This step determines which types of values are exchanged
between sites.

(C-1) Determine values carried by α communication places: This step
lets each αij carry the values in the assignable set obtained at site i to site
j that needs these values to examine the condition of the transition or to
generate tokens for the output places of t. Formally,
- for each αij (i = ps(t)), set a tuple of all the variables in V ini(t) ∧

(V outj(t) ∨ V cond(t))\V inj(t) as the labels of the arcs (t.start, αij),
(αij , t.readj) and (αij , t.cancelj).

(C-2) Determine values carried by β communication places: This step
lets each βjk carry the values in the assignable set obtained at site j, to site
k which needs the values to examine the condition or to generate tokens for
the output places of t. We note that βjk carries a cancellation token to site
k in case that t.cancelj fires at site j. Formally,
- for each βjk, set a tuple of the variables in V inj(t)∧(V outk(t)∨V cond(t))\V ink(t)

as the labels of the arcs (t.readj , βjk), (βjk, t.commitk), (βjk, t.abort1k)
and (βjk, t.abort2k), and

- set an m-tuple of φ’s as the label of (t.cancelj , βjk) where m = |V inj(t)∧
(V outk(t) ∨ V cond(t))\V ink(t)|.

(C-3) Determine values kept by p.inner places: This step lets each p.innerj

keep the values in the assignable set obtained at site j itself and the values
received through αij . We note that p.innerj keeps a cancellation token in
case that t.cancelj fires at site j. Formally,
- for each p.innerj (j �= ps(t) and we assume i = ps(t)), set the tuple of all

the variables in V ini(t) ∧ (V outj(t) ∨ V cond(t)) ∨ V inj(t) as the labels
of the arcs (t.readj , p.innerj), (p.innerj , t.commitj), (p.innerj , t.abort1j)
and (p.innerj , t.abort2j),

- set an m-tuple of φ’s as the label of the arc (t.cancelj , p.innerj) where
m = |V ini(t) ∧ (V outj(t) ∨ V cond(t)) ∨ V inj(t)|, and
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- for p.inneri, set the tuple of all the variables in V ini(t) as the labels of
the arcs (t.start, p.inneri), (p.inneri, t.commiti) and (p.inneri, t.abort1i).

(C-4) Determine values returned by t.abort1 transitions: This step de-
termines when t.abort1k is executed the values to be returned by t.abort1k

to the input places of t allocated to site k. Formally,
- for each (t.abort1k, p) (p ∈ ALCk(•t)), set its label as that of (p, t.readk)

(or (p, t.start)).

Step D: Set Conditions

This step determines the conditions of t.commit, t.abort1 and t.abort2 tran-
sitions so that they can check the executability of transition t.

(D-1) Set the conditions of t.commit transitions: This step determines
the condition of each t.commitk so that it fires only if all the input places
of t have assignable sets and they satisfy the condition of t. Formally,
- for each t.commitk (k �= ps(t)), set the predicate C(t)∧C ′ ∧C ′′ to be the

condition of t.commitk. C(t) is the condition of t in the service specifica-
tion, C ′ is a logical formula “w �= φ” where w is a variable in the label of
arc (p.innerk, t.commitk), and C ′′ is a logical formula “

∧
j xj �= φ” where

xj is a variable in the label of arc (βjk, t.commitk), and
- for t.commitps(t), set the predicate C(t) ∧ C ′′ to be the condition of

t.commitps(t).
(D-2) Set the conditions of t.abort1 transitions: This step determines

the condition of each t.abort1k so that t.abort1k fires only if the condition
of t is not satisfied or some input places which are not at site k do not have
assignable sets. Formally,
- for each t.abort1k (k �= ps(t)), set the predicate ¬C(t)∨C ′∧C ′′ to be the

condition of t.abort1k. C(t) is the condition of t in the service specification,
C ′ is a logical formula “w �= φ” where w is a variable in the label of arc
(p.innerk, t.abort1k), and C ′′ is a logical formula “

∨
j xj = φ” where xj is

a variable in the label of arc (βjk, t.abort1k), and
- for t.abort1ps(t), set the predicate ¬C(t) ∨ C ′′ to be the condition of

t.abort1ps(t).
(D-3) Set the conditions of t.abort2 transitions: This step determines

the condition of each t.abort2k so that it fires only if some input places at
site k do not have assignable sets. Formally,
- for each t.abort2k, set the condition w = φ where w is a variable in the

label of (p.innerk, t.abort2k).

Step E: Decompose Net

After applying Step D, we obtain an integrated form of the protocol specifi-
cation Pspec which includes the behavior specifications for all sites intercon-
nected by the communication places. This step decomposes the obtained net
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into N independent specifications, one for each site. This is done by splitting
each communication place into two places so that the specification of each site
can be an independent Pr/T-net.

3.4 Another Transition Execution Protocol

As stated, the transition execution (TE) protocol may cancel an execution of
transition t to avoid deadlock. In this case, the values exchanged for using
generating tokens are discarded without being used. If the size of the values
of these unused tokens is large and if such a cancellation is repeated many
times, the protocol becomes inefficient. In this case, we may use the following
transition execution protocol that exchanges these values only if it is known
that t will be executed (thus no cancellation of t happens after the decision).

We change the original TE protocol as described in Section 3.2 as follows.

(1) At Step (1) of the original TE protocol, site i sends only the values used
to check the condition of t and only to the reading sites.

(2) At Step (2) of the original TE protocol, site j sends only the values used
to check the condition of t and only to the other reading sites.

(3) At Step (3) of the original TE protocol, only the reading sites examine
the conditions (i) and (ii). If (i) and (ii) are true, the reading sites send at
this moment the values used to generate new tokens to the writing sites
which need them. The writing sites receive these values and generate new
tokens.

As an application example, let us consider again the service specification given
in Fig. 2(a). Here, we assume that the size of values of the tokens 〈“b”〉 and
〈“d”〉 is large. Fig. 5 shows a protocol specification derived based on the above
given TE protocol. Similar to the previous example, we assume that the input
places p1, p2 and p5 are located on site A, p3 on site B, and p4 on site C.

Here unlike the previous TE protocol, the token value assigned to the variable
w in place p4 and needed for generating tokens at site A is not sent to A by
αu.ca since it is not needed for examining the condition x < z of t. The value
of w is only used for generating tokens at site A. Similarly, the value of y is
not sent from site A to site C. If condition of tu is true, sites A and C send
via “γu.ac” and “γu.ca” the values of y and w, respectively. Using these values,
sites A and C generate new tokens. This means that, the large-size token value
〈“b”〉 or 〈“d”〉 in p2 is only sent to site C and this is done only if the condition
of tu is true. Similarly, the large-size value token 〈“d”〉 in p4 is only sent to site
A and this is done only if the condition of tu is true. The derivation algorithm
corresponding to this TE protocol is given in the Appendix (Section A).
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Fig. 5. A protocol specification corresponding to the service specification in Fig.
2(a) derived using the TE protocol given in subsection 3.4.

4 Timestamp-based Contention Control

4.1 Motivation and Outline

For a given service specification, our derivation algorithm derives a protocol
specification that is deadlock free. This is due to the fact that each transition
of a service specification can be executed only when it acquires tokens from
its input places. In our transition execution algorithm, the primary site of a
transition sends requests, for executing the transition, to all other reading sites
that have input places of the transition. If all the required tokens are acquired
by these sites and the condition of the transition is true, the execution of the
transition will be committed. Otherwise, the execution of the transition will
be canceled and thus the protocol specification is always deadlock-free.

However, if the service specification includes competitive transitions that share
multiple choice places (i.e. the Pr/T-net of the service specification is not a
free-choice net) as shown in Fig. 6(a), and if the shared choice places are
allocated to different sites, the tokens in the shared places are obtained at
those different sites by these transitions using a first-come-first-serve policy.
In this case, if a transition fails to obtain all the tokens in the shared choice
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Fig. 6. (a) Service specification and place allocation (we assume that the primary
sites of TX and TY are sites X and Y , respectively). (b) Timing chart (the execution
of both TX and TY is aborted)

places, it immediately releases already obtained tokens as explained above.
As a result, the protocol specification may have live-lock problems, where
(some or all) competitive transitions may starve. This may happen if the
propagation delays from the primary sites to the sites to which the shared
places are allocated are different.

As an example, assume that transitions TX and TY of a given service specifi-
cation share the two input places PA and PB, as shown in Fig. 6(a). Assume
that each of these input places has a token, places PA and PB are allocated to
sites A and B, respectively, and sites X and Y are the primary sites of TX and
TY , respectively, as illustrated in Fig. 6(a). If the request from the primary
site of transition TX (i.e. site X) has a delay to site A shorter than that of
the primary site of TY (i.e. site Y ), and if the request from the primary site of
TX has a longer delay to site B than that to site Y , then TX can acquire the
token in PA at site A and TY can acquire the token in PB at site B. Conse-
quently, since neither TX nor TY can acquire both tokens in places PA and PB,
the requests from the primary sites are not permitted and the execution of
TX and TY is aborted immediately as shown in the timing chart of Fig. 6(b).
This scenario may be repeated several times until either TX or TY successfully
acquires both tokens.

In order to reduce the possibility of having such cancellations, we introduce a
Timestamp-based Contention Control (TCC) algorithm. The TCC algorithm
controls the order of requests to shared places so that all these shared places
have the same total order. In order to reduce cancellations, the TCC algorithm
does not cancel a request unless it violates the total order at a site which has
some shared resources. For this purpose, the TCC uses global time to set an
order. First, the primary sites of TX and TY timestamp their requests using
the global time, and send these requests to sites A and B. Let t(TX) and
t(TY ) denote these timestamps and let us assume that t(TX) < t(TY ). The
timestamp of a request is recorded on the place when the place’s token is
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Fig. 7. Timestamp-based contention control algorithm.

acquired by the request. If the token of place PA or PB has been acquired by
the request of TX when the request of TY arrives, the request of TY can wait
for the request of TX to release the token, since the ordering TX ; TY satisfies
the timestamp ordering rule. On the other hand, if the token of place PA or
PB has been acquired by the request of TY , then TX is canceled immediately
since the ordering TY ;TX violates the timestamp ordering rule. Consequently,
the request of TY is not canceled in this case as shown in Fig. 7(a). Moreover,
in this case, a subsequent request of TX with a newer timestamp than TY is
permitted.

The concept of our TCC algorithm is similar to the concurrent transaction
control in database systems. But usually such transaction control does not
assume multiple shared resources distributed over multiple sites, so we design
a new distributed algorithm for such a purpose. The goal of our design is to
reduce cancellations without introducing special messages or special structures
that may render the protocol specifications more complex. Our TCC algorithm
requires a timestamp mechanism that uses global time without introducing
additional messages into protocol specifications. We note that, according to
our knowledge, this is the first time a contention control mechanism is used
in derived protocol specifications.

In the following subsections, we define a set of transitions and places of a
service specification, called conflict set, that are subject to contention control.
Then we present the TCC algorithm that adds a timestamp mechanism to the
parts of the protocol specification corresponding to the conflict set.

4.2 Preliminaries

We recall that for a transition t, •t (or t•) denotes the set of input (or out-
put) places of t. Also, a place which never loses nor gains tokens by firing of
transitions (i.e. the place is in self-loops) is called a persistent place hereafter.
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Fig. 8. Classification of pair [p, t] in conflict set.

A set CS of transitions and places is said to be a conflict set iff (i) for each
place p in CS, p has at least two transitions in CS as its output transitions,
(ii) for each transition t ∈ CS, t has at least two places in t ∈ CS as its input
places, and (iii) each place in CS is a persistent place. For example, in Fig.
6(a), {TX , TY , PA, PB} is a conflict set. We apply the TCC algorithm for each
conflict set. The reason why we focus only on persistent places is that in such
a place, tokens will be returned and transitions can wait for tokens to be back
even if some other transitions currently use them.

We say that a pair of a place and a transition [p, t] in a conflict set has a read
attribute if there exist a variable x and a place p′ such that x is in the arc label
of (p, t) and x is in the arc label of (t, p′). We also say that [p, t] has a write
attribute if L(t, p) is not the same as L(p, t) (that is, if (t, p) and (p, t) have
different arc labels). [p, t] is said to be (a) RW-persistent (i.e. read-write) if
[p, t] has both read and write attributes, (b) RO-persistent (i.e. read-only) if
[p, t] has only a read attribute, and (c) WO-persistent (i.e. write-only) if [p, t]
has only a write attribute.

For example, in Fig. 8(a), [p, t] is RW-persistent since the variable x is used
on an output arc of t and L(t, p)=〈y〉 is not the same as L(p, t)=〈x〉. In Fig.
8(b), [p, t] is RO-persistent since x is used on L(t, p) and L(t, p)=L(p, t)=〈x〉.
In Fig. 8(c), [p, t] is WO-persistent since x is not used in any output arc of
t and L(t, p) is not the same as L(p, t). This classification of place-transition
pairs will be used in the TCC algorithm for updating the timestamps attached
to tokens in the places of a conflict set.

Here, we introduce two types of variables that will be used by our TCC al-
gorithm. For every token (say c) in a place of a conflict set in the protocol
specification, we attach two (timestamp) variables denoted by R(c) and W (c).
In the example of Fig. 6(a), we attach R(c) and W (c) variables to the tokens
〈“c”〉 in PA and PB in the protocol specification. At the initial marking, the
values of these variables are set to zero. We assume that each site has a clock
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Table 4
Pre- and post-conditions to get token c in p for the execution of t.

type of [p, t] pre-condition post-condition

(a) RW-persistent R(c) < o(t) ∧ W (c) < o(t) R(c) := W (c) := o(t)

(b) RO-persistent W (c) < o(t) R(c) := o(t)

(c-i) WO-persistent R(c) < o(t) ∧ W (c) < o(t) W (c) := o(t)

(c-ii) R(c) < o(t) < W (c) –

that is synchronized with those of the other sites 2 .

4.3 Timestamp-based Contention Control Mechanism

As stated earlier, our timestamp-based contention control (TCC) algorithm
allows a transition t in a conflict set to wait for tokens to be released. For this
purpose, when a transition t is selected by a primary site for examining its
executability at a global time, we set a timestamp of the global time to the
variable o(t). This value is sent to the reading sites of t which have places of
the conflict set in order to inform these reading sites that transition t has been
chosen for examining its executability. If the execution of t at a reading site
does not preserve the order of timestamps, then the reading site aborts this
execution by sending cancellation tokens to all the other reading and writing
sites. In response to these cancellation tokens, these sites release and return
to their original places the tokens they already acquired for the execution of
t.

In order to incorporate the above mechanism in our protocol specifications, we
use the values of the timestamp variables R(c) and W (c) and the occurrence
times of transitions set by the primary sites. The decision made by a reading
site of a transition t to wait for a token (say c) in a place p of the conflict set
or to cancel the execution of t, is based on the set of precondition rules. These
rules are chosen according to the type of the pair [p, t] as shown in Table 4.

These rules are inspired from those presented in Ref. [30]. For efficiency, we
distinguish the types of place-transition pairs by their operations (read and
write operations) so that a read-only operation can ignore other read-only
operations (they do not affect each other). For example, rule (b) in Table 4
indicates that the RO-persistent pairs should only consider the order of other
pairs that have write operations. Rule (a) and rule (c-i) in Table 4 indicate

2 We use these clocks only to determine the total order of the execution of tran-
sitions in a conflict transition set. Thus, these clocks do not need to be precisely
synchronized.
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that RW- and WO-persistent pairs must consider the order of every other
pair. Rule (c-ii), which is known as Thomas’s write rule, indicates that a
token value, written by the write-only operation and overwritten by a newer
write operation, can be ignored if this value is not used by any read operation.

When transition t tries to acquire a token c from place p at a reading site,
it first checks the precondition that corresponds to the type of [p, t]. If the
precondition is true, the reading site acquires the token. If the token c is not
in p, the reading site waits for c to be released. If all reading sites acquire
assignable sets, the execution of t will actually take place. In this case, we
update the values of the timestamp variables R(c) and W (c) as specified in
the corresponding post-condition action shown in Table 4. On the other hand,
if the precondition is not true, the reading site of t aborts the execution of t.
The details of this algorithm are given in the Appendix (Section C).

4.4 Discussion

Our TCC algorithm may cause a fairness problem. For example, in Fig. 6(a),
let us assume that the primary site of TY has much longer delays to sites
A and B than the primary site of TX . In this case, t(TY ) may be too old
when the request of TY arrives at site A or site B, and thus TY ’s request may
be canceled, because during the propagation of TY ’s request, another newer
request of TX may use these tokens and update their timestamps. This results
in unnecessary cancellation even if these tokens are available, as shown in Fig.
7(b). However, this does not happen in the original protocol specification.

Since the TCC algorithm is independent of the derivation algorithm, we may
choose another design option. For example, to pursue complete fairness, an
alternative algorithm can be introduced that prevents cancellations, suffering
extra delay. We assume that all the sites know the maximum delay D of all
the channels between the sites as well as the global time. Each primary site
timestamps a request (let t denote the timestamp) using the global time, and
sends it to reading sites which have shared places. Each reading site which has
shared places has a list to store received requests. Any request with timestamp
t is removed from the list and processed exactly at time t+D. Considering the
fact that any request issued no later than global time t arrives no later than
time t+D, all the requests are completely ordered at each reading site. Due to
this feature, no cancellation occurs. Instead, any request must be delayed for
D. Depending on the application domain, we many choose another variation
of the algorithm. Space limitations do not allow us to discuss this further.
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5 Tool Support and Application Examples

Synthesis methods have been applied to many applications such as commu-
nication protocols [25,26], factory manufacturing systems [31], distributed co-
operative work management [15] and so on [24,27].

In the following subsections we apply our synthesis method to a distributed
Media Transcoding (MT) service on service overlay networks and to a dis-
tributed software development process called ISPW-6 [28].

5.1 Toolset

Deriving protocol specification by hand is very complex and time consuming
for large systems. Accordingly, we have developed a toolset in Perl that imple-
ments our algorithm and co-works with a graphical tool “CPN Tools” [23] for
the representation of the service and protocol specifications. In the toolset, we
first describe the service specification using CPN Tools that is used to design,
simulate and verify coloured Petri nets (CPNs) including Pr/T-nets. CPN
Tools can be used for modeling Pr/T-nets since Pr/T-nets can be regarded
as a sub-class of CPNs. Second, our tool parses the given service description
written in the CPN Tools format (described in XML and DTD) using the
XML parser [32]. Third, our Perl program uses the parsed specification and
generates a corresponding protocol specification according to our derivation
algorithm.

5.2 Application Examples

Recently, the use of collaborative computation that connects distributed appli-
cation components with each other to provide services became very popular.
One typical example is a service overlay network where several servers build
a virtual backbone by unicast tunnels (an overlay network) to provide trans-
parent services to users [33]. As a realistic example, we consider the design
of a media transcoding (MT) service on overlay networks. The MT service
decomposes an MPEG2 file into its constituent media (video, audio, text),
converts these media representations into versions with different quality and
finally combines these different media versions to obtain several MPEG files
that are suitable for playback by users with various quality requirements. The
description of this MT service is shown in Fig. 9 using the notation of CPN
Tools. The notation used by CPN Tools is different from what we have seen
so far. The names of places and transitions are written inside circles and tran-
sitions, respectively. The strings associated with places and written outside
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Fig. 9. Application example 1: service specification of an MPEG2 transcoding ser-
vice.

the circles are place types, which were not explicitly written in the preceding
figures.

In Fig. 9, the inputs and outputs of this service are represented as places
named Pio1,.., Pio4. The MPEG2 file is entered from Pio1 and decomposed
into three components by the transition T1. Then each component is copied
and transcoded, and finally components are merged by T7, T12 and T14 in
parallel for heterogeneous users which require specific qualities appropriate to
the capability of their playback devices. We have distributed this service onto
three sites 1, 2 and 3. We have used the following allocation;

site 1: {Pio1, P io2, P r1, P r3, P r6, P r8, P r12, P r15, P r17},
site 2: {Pio3, P r4, P r9, P r10, P r13} and

site 3: {Pio4, P r2, P r5, P r7, P r11, P r14, P r16, P r18, P r19}.
Then the derived protocol specification is shown as a screen shot from the CPN
Tools in Fig. 10 (the net layout was adjusted manually). For better readabil-
ity, our tool provides a hierarchical description of the protocol specification.
It includes an overview of the protocol specification as well as the detailed be-
havior that simulates each transition of the service specification. Specifically,
the protocol specification of each site i, say Pspeci, preserves the structure
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(a) Top level descriptions.

(b) Subpages corresponding to substitution transition T12.

Fig. 10. Protocol specification of MPEG2 transcoding service shown by screen shot
from CPN Tools [23].
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of the service specification where only the related transitions and the places
allocated to that site remain. This is referred to as a top level description.
Each transition t of Pspeci in the top level description is a substitution tran-
sition, which is replaced with a net called subpage that simulates transition
t. A substitution transition and its corresponding subpage are interconnected
by fusion places. Fig. 10(a) shows the top level descriptions of Pspec1, Pspec2

and Pspec3, and Fig. 10(b) shows the three subpages substituted for transi-
tion T12 in these top level descriptions. The subpages of the other transitions
are omitted due to space limitations.

As another example, we consider distributed development of software that in-
volves five engineers (project manager, quality assurance, design, and two soft-
ware engineers). Each engineer has his/her own machine connected through
a network, and participates in the software development process using the
machine. The resources used in the process are allocated to those machines.
Then the distributed process specification of each engineer clearly indicates
how he/she proceeds with the development process. This development pro-
cess includes tasks for scheduling and assigning tasks, design modification,
design review, code modification, test plan modification, modification of unit
test packages, unit testing, and progress monitoring. The engineers cooperate
with each other to finish these sub-sequential tasks in a suitable order. The
reader may refer to ISPW-6 Core Problem [28] for a complete description of
this process, which was provided as an example to help the understanding
and comparison of various approaches to process modeling. Fig. 11 shows the
process description in the notation of the CPN Tools. We note that for con-
venience, we do not show the progress monitoring tasks in Fig. 11. We omit
to show the protocol specification due to space limitations.

It took 15 and 25 seconds on a Windows XP PC with Intel Xeon 3.0GHz CPU
and 1.5GB memory to derive these protocol specifications.

6 Conclusion and Current Research Work

We have proposed a protocol synthesis technique for systems modeled as Pr/T-
nets (predicate/transition-nets), a first-order extension of Petri nets. Our tech-
nique is based on a top-down approach where a service requirement is defined
in the form of a Pr/T-net with a centralized view, and then it is decomposed
into communicating components located on different sites which together pro-
vide the required service. The originality of our approach is the fact that non-
restricted Petri nets with conflicting transitions can be used for the description
of the services which are the starting point of the protocol development. This is
a very important feature for modeling recent distributed collaborative systems
since they often include multiple (and to be distinguished) processes such as
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Fig. 11. Application example 2: service specification of ISPW-6 given in [28].

mobile users. Moreover, we have presented a contention control algorithm for
a distributed environment based on timestamps. A tool has been developed
that implements our algorithm and works together with other existing tools.
Moreover, two application examples are provided.

We would like to mention the advantage of our algorithm in terms of readabil-
ity and reusability of derived specifications, which are very important factors
in software development and management. Our algorithm splits (decomposes)
one by one every transition of the service into corresponding transitions that
can be executed in a distributed way. Accordingly, the structure of the derived
protocol specification is similar to the structure of the service specification
which increases the readability. Moreover, due to the nature of our derivation
algorithm, we have a relation between each transition of the service specifi-
cation with corresponding transitions of the protocol specification. Similar to
our previous work in [15], this relation makes it easy to re-use unaffected parts
of an already derived protocol specification after modifying the corresponding
service specification.

The synthesis protocol presented in this paper assumes that the allocation
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of service places to different communicating components is given. However,
in the context of distributed applications, there may be a large number of
possible place allocation, and their choice may have an important impact on
the performance of the resulting system. Therefore it is desirable to find an
optimized place allocation and system. This is part of our current research
work. In a preliminary version of this work [34] we incorporated into the
protocol presented in this paper a model that determines an optimal allocation
of places based on some cost criteria such as channel utilization and total
response time costs. Currently, we are enhancing this model by incorporating
more cost criteria that could be used in various application areas for deriving
protocol specifications.
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A Derivation Algorithm for Another TE Protocol

We present the derivation algorithm corresponding to another TE protocol
presented in Section 3.4. We use the notations in Table 3 and the rules in Fig.
4.

Step A: Decompose Transitions

(A-1) Decompose t into t.condition transitions:
- Apply Rule 1 to divide t into a set of t.conditionk transitions such that

for each k ∈ RS(t) ∨WS(t) a t.conditionk transition is created at site k.
Then attach the places in ALCk(•t) ∨ ALCk(t•) to t.conditionk.

(A-2) Add t.start and t.read transitions and p.inner1 places:
- For each t.conditionk (k ∈ RS(t)\{ps(t)}), apply Rule 2 to insert a tran-

sition t.readk and a place p.inner1k before t.conditionk.
- For t.conditionps(t), apply Rule 2 to insert a transition t.start and a place

p.inner1ps(t) before t.conditionps(t).
(A-3) Add t.commit transitions and p.inner2 places:

- For each t.conditionh (h ∈ WS(t)), apply Rule 2 to insert a place p.inner2h

and a transition t.commith after t.conditionh.
(A-4) Add communication places:

- For each pair of t.start and t.readj , apply Rule 3 to insert a communica-
tion place αij ,

- for each pair of t.readj and t.conditionk (k ∈ RS(t) and j �= k), apply
Rule 3 to insert a communication place βjk,

- for each pair of t.conditionk and t.commith (k, h ∈ RS(t) and k �= h)
where V ink(t) ∧ V outh(t)\(V inh(t) ∨ V cond(t)) �= ∅, apply Rule 3 to
insert a communication place γkh, and

- for each pair of t.conditionk and t.commith (k ∈ RS(t), h �∈ RS(t) and
k �= h) where (V ink(t) ∨ V cond(t)) ∧ V outh(t)\V inh(t) �= ∅, apply Rule
3 to insert a communication place γkh.

Step B: Introduce Cancellation and Locking Mechanisms

(B-1) Add t.cancel transitions:
- For each t.readj , apply Rule 4 to add a transition t.cancelj where •t.cancelj =
{αij} and t.cancelj• = t.readj•.

(B-2) Add t.abort1 transitions:
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- For each t.conditionk (k ∈ RS(t)), apply Rule 4 to add a transition
t.abort1k where •t.abort1k = •t.conditionk and t.abort1k• = ALCi(•t).

(B-3) Add t.abort2 transitions:
- For each t.conditionk (k �= ps(t)), apply Rule 5 to add a transition

t.abort2k where •t.abort2k = •t.conditionk.
(B-4) Add p.lock1 and p.lock2 places:

- For each k ∈ RS(t)\{ps(t)}, apply Rule 6 to add a place p.lock1k with a
normal token inside where •p.lock1k = {t.conditionk, t.abort1k, t.abort2k}
and p.lock1k• = {t.readk, t.cancelk}.

- For ps(t), apply Rule 6 to add a place p.lock1ps(t) with a normal token in-
side where •p.lock1ps(t) = {t.conditionps(t), t.abort1ps(t)} and p.lock1ps(t)• =
{t.start}.

- For each h ∈ WS(t), apply Rule 6 to add a place p.lock2h with a normal
token inside where •p.lock2h = {t.commith} and p.lock2h• = {t.conditionh}.

Step C: Set Arc Labels

(C-1) Determine values carried by α communication places:
- For each αij (i = ps(t)), set the tuple of all the variables in V ini(t) ∧

V cond(t)\V inj(t) as the labels of the arcs (t.start, αij), (αij, t.readj) and
(αij , t.cancelj).

(C-2) Determine values carried by β communication places:
- For each βjk, set the tuple of the variables in V inj(t)∧ V cond(t)\V ink(t)

as the labels of the arcs (t.readj, βjk), (βjk, t.conditionk), (βjk, t.abort1k)
and (βjk, t.abort2k), and

- set an m-tuple of φ’s as the label of (t.cancelj , βjk) where m = |V inj(t)∧
V cond(t)\V ink(t)|.

(C-3) Determine values carried by γ communication places:
- For each γkh (k, h ∈ RS(t)), set a tuple of the variables in (V ink(t) ∧

V outh(t))\(V inh(t)∨V cond(t)) as the labels of the arcs (t.conditionk, γkh)
and (γkh, t.commith), and

- for each γkh (k ∈ RS(t) and h �∈ RS(t)), set a tuple of the variables
in (V ink(t) ∨ V cond(t)) ∧ V outh(t)\V inh(t) as the labels of the arcs
(t.conditionk, γkh) and (γkh, t.commith).

(C-4) Determine values kept by p.inner1 places:
- For each p.inner1j , set a tuple of all the variables in V ini(t)∧V cond(t)∨

V inj(t) as the labels of the arcs (t.readj, p.inner1j), (p.inner1j, t.conditionj)
(p.inner1j , t.abort1j) and (p.inner1j , t.abort2j), and

- set an m-tuple of φ’s as the label of the arc (t.cancelj , p.inner1j) where
m = |V ini(t) ∧ V cond(t) ∨ V inj(t)|.

(C-5) Determine values kept by p.inner2 places:
- For each p.inner2h (h ∈ RS(t)), set a tuple of all the variables in V outh(t)∧

(V inh(t)∨V cond(t)) as the labels of the arcs (t.conditionh, p.inner2h) and
(p.inner2h, t.commith), and

- for each p.inner2h (h �∈ RS(t)), set empty labels to the arcs (t.conditionh, p.inner2h)
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and (p.inner2h, t.commith).
(C-6) Determine values returned by t.abort1 transitions:

- For each (t.abort1k, p), set its label as that of (p, t.readk) (or (p, t.start))
(p ∈ ALCk(•t)).

Step D: Set Conditions

(D-1) Set the conditions of t.condition transitions:
- For each t.conditionk (k ∈ RS(t)\{ps(t)}), set the predicate C(t)∧C ′∧C ′′

to be the condition of t.conditionk. C(t) is the condition of t in the service
specification, C ′ is a logical formula “w �= φ” where w is a variable in the
label of arc (p.inner1k, t.conditionk), and C ′′ is a logical formula “

∧
j xj �=

φ” where xj is a variable in the label of arc (βjk, t.conditionk).
- For t.conditionps(t), set the predicate C(t) ∧ C ′′ to be the condition of

t.conditionps(t).
(D-2) Set the conditions of t.abort1 transitions:

- For each t.abort1k (k �= ps(t)), set the predicate ¬C(t) ∨ {C ′ ∧ C ′′} to
be the condition of t.abort1k. C(t) is the condition of t in the service
specification, C ′ is a logical formula “w �= φ” where w is a variable in the
label of arc (p.inner1k, t.abort1k), and C ′′ is a logical formula “

∨
j xj = φ”

where xj is a variable in the label of arc (βjk, t.abort1k).
- For t.abort1ps(t), set the predicate ¬C(t) ∨ C ′′ to be the condition of

t.abort1ps(t).
(D-3) Set the conditions of t.abort2 transitions:

- For each t.abort2k, set the condition w = φ where w is a variable in the
label of (p.inner1k, t.abort2k).

Step E: Decompose net.

After applying Step D, we obtain an integrated form of the protocol specifi-
cation Pspec which includes the behavior specifications for all sites intercon-
nected by the communication places. This step decomposes the obtained net
into N independent specifications, one for each site. This is done by splitting
each communication place into two places so that the specification of each site
can be an independent Pr/T-net.

B On the Validity of the Derivation Algorithm

Here we comment on the validity of the derivation algorithm presented in
Section 3.3. Particularly, we show that the Pr/T-subnets obtained by applying
the TE protocol to a transition t of Sspec realize the same behavior as t.
Moreover, any executable transition sequence of Sspec is preserved in Pspec
and vice versa.
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Fig. B.1. (a) PspecA of Fig. 2(b) (PspecA(tu) is emphasized by a meshed square.)
(b) Sspec and Sspec′.

Hereafter, the set of N sites is denoted by S. Also Pspec of site i is denoted
by Pspeci. Thus

⋃
i∈S Pspeci = Pspec. Moreover, the sub-Pr/T net of Pspeci

that corresponds to t is denoted by Pspeci(t). In Fig. B.1, we show PspecA of
Fig. 2(b) as an example where PspecA(tu) is emphasized for readability. We
first comment on the fact that {Pspeci(t)|∀i ∈ S} simulates the behavior of t.

Validity of simulation of each transition. Due to Step A of the algo-
rithm, any combination of t.start, t.readj (at reading sites) and t.commitk
are executed in this order. Due to Step B of the algorithm, t.cancelj may fire
instead of t.readj at a reading site, and t.abort1k or t.abort2k may fire instead
of t.commitk at a reading or writing site. Consequently, we can say that any
combination of t.start, t.readj (or t.cancelj) at a reading site j and t.commitk
(or t.abort1k or t.abort2k) are executed in this order.

Due to Step C of the algorithm, we can easily say that each t.commitk at
a reading site has all the values needed to check the condition of t and to
generate tokens to the output places of t allocated to site k, in its input
places. We can also say that t.abort1k has all the values needed to be returned
to the input places of t allocated to site k. Assuming these facts, we show the
following facts for the validity of the algorithm. (1) If t.start and all t.readj

transitions fire and if the condition of t is true, then all t.commitk transitions
will fire, and tokens are generated to the output places of t. (2) If t.start and
all t.readj transitions fire and if the condition of t is not true, then all t.abort1k

transitions will fire that restore the tokens taken by t.readk transitions to the
input places of t. (3) If t.start, some t.readj transitions and some t.cancelj′
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transitions fire, then t.abort1j transitions will fire that restore the tokens taken
by t.readj transitions to the input places of t and t.abort2j′ transitions will
fire.

First, due to Step D-1 of the algorithm, each t.commitk fires only if t.start
and all the t.readj fire and if the condition of t is true. Therefore, the above
fact (1) is shown. Secondly, due to Step D-2 of the algorithm, each t.abort1k

will fire only if t.start and all the t.readj fire but the condition of t is not
true. Therefore, the above fact (2) is shown. Finally, let j′ denote a reading
site where some input places of t allocated to site j′ do not have assignable
sets. In this case, t.cancelj′ fires and each reading or writing site (say k)
receives a token filled with φ via communication place βj′k. As a result, due to
Step D-2 of the algorithm, t.abort1k will fire and the tokens taken by t.readk

transition are restored to the input place of t at site k. At site j, after firing
of t.cancelj , a token filled with φ is generated in p.innerk. Due to Step D-3
of the algorithm, t.abort2j will eventually fire. In this case, no assignable sets
are returned because no assignable sets are taken from the input places at site
j. �

Then assuming the correctness of {Pspeci(t)|∀i}, we comment on the fact that
any transition sequence executable in Sspec is preserved in Pspec and vice
versa. For simplicity of discussion, we assume that any {Pspeci(t)|∀i ∈ S}
does not have the cancellation mechanism, which just returns the obtained
assignable sets to the original input places.

Validity of simulation of whole net. Due to Step A of the algorithm,
{Pspeci(t)|∀i} has the following properties. (1) t.start is executed before any
t.read transition. (2) t.start transition and all t.read transitions at reading
sites are executed before any t.commit transition. (3) Once a t.commit tran-
sition is executed, all the rest of t.commit transitions will eventually be exe-
cuted. Here, since any reading site can be a primary site in our algorithm, the
execution order of t.start and t.read does not affect the validity. Therefore,
we ignore the property (1) in this proof. Each {Pspeci(t)|∀i} simulates the
behavior of t correctly, but from the properties (2) and (3), timing to take
tokens from input places of t at each reading site may not be synchronized
with the other reading sites, and timing to produce tokens to output places
of t at each writing site may not also be synchronized with the other writing
sites. From this fact, we can regard that Pspec is equivalent to a modified
Sspec where a pair of a dummy transition and a dummy place is inserted for
each pair of a transition and a place of Sspec. We denote the modified Sspec
by Sspec′ and show an example in Fig. B.1(b), where dummy transitions and
places are shown by meshed parts. Obviously, this transformation does not
change the executable set of transition sequences. Then we can obviously say
that any transition sequence executable in Sspec is also executable in Sspec′

and vice versa. This means that any executable transition sequence of Sspec
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is preserved in Pspec and vice versa. �

C Detailed Algorithm for Adding Timestamp-based Contention
Control Mechanism

We present the algorithm to add our Timestamp-based Contention Control
(TCC) described in Section 4.

For each conflict set CS in the service specification, this algorithm is applied
to the corresponding part of the protocol specification.

(1) Let each token c in a place of the conflict set CS have two timestamp
variables R(c) (a read timestamp) and W (c) (a write timestamp). Let
the values of those variables at the initial marking be zero. Also assign
a unique (constant) identifier ID(c) to c in order to distinguish multiple
tokens in the place.

(2) For each transition t of CS, let t.start of the primary site i set the oc-
currence time o(t) of t to the α-messages sent by site i. If site i has a
place p of CS, then add the corresponding pre-condition of Table 4 to
the condition of t.start. Also, let t.start generate a dummy token c′ into
place p for each token c taken by t.start. Here, a dummy token of a token
c is a copy of c except that all the data value fields of c′ are replaced
by φ. Also let t.start set c′’s timestamps according to the corresponding
post-condition of Table 4. As a special case, if [p, t] is WO-persistent,
set “R(c) < ot” to the condition of t.read and set max(W (c), ot) to the
timestamp W (c′). Also if ot ≤ W (c), set τ to value fields of c′ instead of
φ, to represent that this token c is selected by Thomas’s write rule.

(3) If a reading site j of t has a place p of CS, add the corresponding pre-
condition of Table 4 to the condition of t.read at site j (o(t) can be
obtained from the α-message sent by the primary site i). Then, let t.read
generate a dummy token c′ into place p for each token c in p whenever
t.read takes the token c from p. Let t.read set c′’s timestamps according
to the corresponding post-condition of Table 4. As a special case, if [p, t]
is WO-persistent, set “R(c) < ot” to the condition of t.read and set
max(W (c), ot) to the timestamp W (c′). Also if ot ≤ W (c), set τ to value
fields of c′ instead of φ, to represent that this token c is selected by
Thomas’s write rule. Moreover, add the negation of this pre-condition to
the condition of t.cancel at site j.

(4) Let t.commit take the dummy token c′ in p corresponding to each token
c returned to p by t.commit. At this time, the value of c is updated by
the label of arc (t, p) and c’s timestamps are updated by those of c′. Also,
let t.abort1 take the dummy token c′ in p corresponding to each token c
and return c as it is to p. As a special case, if c′ is filled by τ , (i.e. c is
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selected by Thomas’s write rule), let t.commit return the token c as it is.

The protocol specification corresponding to the service specification and place
allocation in Fig. 6(a) where the above algorithm is applied is shown in Fig.
C.1.
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Fig. C.1. Timestamp-based contention control mechanism is applied to protocol
specification derived from service specification and place allocation in Fig. 6(a).
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